欢迎您来到 傲商务——傲商务,免费供求信息发布平台

未来陶瓷膜领域的发展趋势将集中在以下5个方面:(1)进一步提高陶瓷膜材料的分离精度及其分离稳定性

更新时间:2021-12-08 01:28:34 浏览量:41

70年代末,法国和美国相继以铀的浓缩为目的,研制和开发了非对称无机分离膜,首次将无机膜引入分离领域;80年代有了重大发展,多层、多通道的无机膜开发成功并走向商业化,在食品及生物工程中成功地用于液相体系的分离;90年代后期,无机膜的用途扩展到水的过滤、环境保护中废水处理和贵重材料的回收、制造工业过滤等方面国外多孔陶瓷材料的研究和开发已有80余年历史,应用也有近30年历史,其产品的产业化、商业化程度已达到较高的水平,产品的技术水平也有了很大提高。目前国外已有专业的多孔陶瓷材料及陶瓷膜材料生产厂家300余家,其中美国、日本、法国等国家在陶瓷膜的开发和应用方面发展极为迅速。我国从20世纪80年代开始无机膜的研究工作,迄今已取得了较大的进步,陶瓷膜用于废水处理也已逐步走向工程化。但相比之下,国内在多孔陶瓷材料产业发展方面与国外先进国家相比存在明显不足,其一是国内绝大多数人对多孔陶瓷材料缺乏必要的了解,其二是国内多孔陶瓷材料的发展技术不平衡,目前UF膜、RO膜等已被广泛应用于各领域,而NF膜、MF膜从技术水平和应用方面来说都刚刚起步。近年来,在国家科技攻关政策的扶持下,尤其是在国家环保、节能政策的引导下,国内多孔陶瓷材料及膜材料技术有了较快的发展,产业化及市场化规模逐渐扩大。如中材高新材料股份有限公司(山东工业陶瓷研究设计院)、江苏省九吾高科技发展公司、合肥世杰膜工程有限责任公司等企业在陶瓷膜材料制备技术方面逐渐形成了自己的技术优势,在一定程度上达到国外先进水平。目前国际上无机陶瓷分离膜的研究主要针对非对称膜,其研究内容主要集中在以下几个方面:膜及膜反应器制备工艺的研究、膜过滤与分离机理的研究、多孔质微孔结构的表面改性、无机膜显微结构及性能的测试与表征。其中膜工艺的研究相对较多,且多为MF膜与UF膜,RO膜则较少,制备完好致密无缺陷的RO膜或对RO膜结构性能的测试与表征都是当前的研究热点和难点课题。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

相转化法膜制备工艺始于上世纪六十年代Loeb和其合作者[17]的研究,他们首次采用相转化法制备了非对称结构的反渗透膜,从而使聚合物分离膜有了工业应用的价值自此以后,相转化法制膜被广泛的研究,这种方法操作简单,通过改变相转化法中各种参数条件可以得到不同结构形貌的聚合物分离膜。这些膜已被广泛应用于流体分离、反渗透、透析、超滤、纳滤及气体分离等多种膜分离应用领域里。将相转化法应用于中空纤维陶瓷膜制备的报道最早见于20世纪90年代初,Lee和Kim在湿法纺丝的基础上,采用相转化法通过一次成型制备了非对称结构的Al2O3中空纤维陶瓷膜。在干/湿法纺丝的基础上,通过制备相转化法中空纤维陶瓷膜的方法与中空纤维聚合物膜制备方法类似,其过程如图3所示,具体过程如下:1)将陶瓷粉体、聚合物、溶剂和非溶剂添加剂混合均匀制备粘度适当的纺丝铸膜浆料;2)将制备的铸膜浆料加入纺丝装置浆料罐中,先抽真空排除残余气泡,然后通芯液(内胶凝剂),并通过流量计控制从纺丝头内管流出的芯液流速,最后施加氮气压力将抽真空后浆料挤入纺丝头;3)从纺丝头喷出的湿膜经过一段空气(或其它控制气氛)间隙后浸入外凝固浴(外胶凝剂)中进行胶凝固化(正因为如此才称为干/湿法纺丝,如果纺丝头喷出纤维不经过空气间隙而直接浸入外凝固浴中,则称为湿法纺丝)。相转化法中空纤维陶瓷膜的制备本质上就是有机物高分子辅助的陶瓷膜成型方法,纺丝过程中挤出的湿膜两侧分别与外凝固浴和芯液接触时,浆料中的溶剂与非溶剂(凝固浴和芯液)进行物质交换使有机聚合物发生分相而固化成膜,最后经干燥和高温烧结除去有机物质后,获得中空纤维陶瓷膜[56]。相转化法制备中空纤维陶瓷膜过程中,在芯液和外凝固浴的共同作用下,分相过程从膜腔和膜外侧同时发生,铸膜浆料组成、粘度和纺丝参数(浆料挤出速率、芯液流速、空气间隙、内外胶凝剂组成和温度等)都对分相过程有着重要影响,从而影响着膜的最终结构与性能。采用相转化和高温烧结相结合的方法,可通过一步成型和一次高温烧结制备对称和非对称结构的中空纤维陶瓷膜。如图4[5]所示,在不同的制备工艺条件下,可获得完全不同的ZrO2中空纤维膜微观结构。正是由于相转化法在中空纤维陶瓷膜制备方面具有过程简单易于控制、成本低、制备的膜微观结构可控和可通过一步成型获得非对称结构的高渗透性膜等优点,因而,近几年来,相转化法与高温烧结相结合的中空纤维陶瓷膜制备方法受到极大的关注,成为中空纤维陶瓷膜制备的主要方法。3结语中空纤维陶瓷膜的制备方法主要有机模板法、静电纺丝法、挤压成型法和相转化法等。

多孔陶瓷膜制备技术研究以提高陶瓷膜整体性能为导向,通过对陶瓷膜微结构的调控,实现陶瓷膜制备技术的突破经过多年的发展,现已形成以固态粒子烧结技术、溶胶-凝胶技术等传统陶瓷膜制备技术为基础,造孔剂法、模板剂法、修饰技术等陶瓷膜制备新技术蓬勃发展的新态势。这些方法互相借鉴互相融合,对提高膜性能,降低膜的制造成本起到了促进作用,在很大程度上也进一步促进了对膜制备过程的定量控制,正因为如此,陶瓷膜制备技术已从经验为主推进到定量控制的水平,推动了陶瓷膜产品的工业化发展。未来陶瓷膜领域的发展趋势将集中在以下5个方面:(1)进一步提高陶瓷膜材料的分离精度及其分离稳定性,使其在液体分离领域实现纳滤级别的连续高效运行,在气体分离领域实现多组分气体的高效分离;(2)研制具有大孔径及高孔隙率的耐高温陶瓷分离膜材料,使其在资源的高效利用及环境保护等领域实现高温气固分离过程的长期稳定运行;(3)实现陶瓷膜表面性质的调控,通过改变其表面亲疏水性及荷电性、生物兼容性等以拓展陶瓷膜的应用领域;(4)实现陶瓷膜的低成本化生产,结合构建面向应用过程的膜材料设计与制备方法,解决陶瓷膜推广应用的瓶颈问题;(5)研制耐强酸强碱等苛刻体系的膜材料,提高膜材料分离性能的稳定性,拓展其在过程工业的应用范围。多孔陶瓷膜制备技术研究必将进一步引领和推动陶瓷膜技术及产业的发展,进而实现制备技术从理论到应用的转化。早日攻克困扰陶瓷膜技术发展的热点及瓶颈性难点,将缓解过程工业面临的资源、能源与环境的瓶颈压力。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

小编给您归纳了未来陶瓷膜领域的发展趋势将集中在以下几个方面:进一步提高陶瓷膜材料的分离精度及其分离稳定性,使其在液体分离领域实现纳滤级别的连续高效运行,在气体分离领域实现多组分气体的高效分离;研制具有大孔径及高孔隙率的耐高温陶瓷分离膜材料,使其在资源的高效利用及环境保护等领域实现高温气固分离过程的长期稳定运行;实现陶瓷膜表面性质的调控,通过改变其表面亲疏水性及荷电性、生物兼容性等以拓展陶瓷膜的应用领域;实现陶瓷膜的低成本化生产,结合构建面向应用过程的膜材料设计与制备方法,解决陶瓷膜推广应用的瓶颈问题;研制耐强酸强碱等苛刻体系的膜材料,提高膜材料分离性能的稳定性,拓展其在过程工业的应用范围。

支撑体层的厚度一般约为几个毫米,孔径范围大约在1~10μm;中间过渡层的厚度一般为10~100μm,孔径范围常在50~100nm;过滤层(陶瓷分离膜)是很薄的,厚度约为1~10μm,孔径常在100nm以下陶瓷膜亦可为多层,层数越多,微孔梯度变化愈平缓,其抗热震性越好,而抗热性方面优于其他膜。降低过滤层(膜)的厚度,其过滤分离效果可优于高分子膜。陶瓷膜分离技术主要是依据“筛分理论”,根据在一定的膜孔径范围内渗透的物质分子直径不同则渗透率不同,原料液在膜管内或膜外侧流动,小分子物质或液体透过膜,大分子物质或固体被膜截留,使流体达到分离、浓缩、纯化和环保等目的。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

通过改变ALD沉积的循环次数,在陶瓷基膜上沉积不同厚度的氧化铝层扫描电子显微镜观测证实了随着沉积次数的增加,膜孔径逐步减小直至完全封闭,并形成具有梯度孔结构的超薄分离层;测试了不同沉积次数膜管的纯水通量以及对牛血清蛋白(BSA)的截留率,结果显示随着沉积次数的增加,膜的纯水通量逐渐变小而对BSA的截留率逐渐增加,而截留率上升的幅度明显高于通量下降的幅度。如经600次ALD循环沉积氧化铝,膜通量由沉积前的1700L·(m2·h·bar)下降至1lOL·(m2·h·bar)—1,而对BSA的截留率则由沉积前的3%提高至98%,实现了基膜从微滤膜到超滤膜、纳滤膜以至致密膜的转变。(1)孔径调节的精度高。每一次ALD循环,产生的沉积层的厚度在0.1纳米以下,也即膜孔可在优于0.1纳米的精度上减小;(2)孔径调节过程均勻连续。ALD在陶瓷膜上产生的沉积层厚度可通过改变循环次数来均勻连续的控制,得到孔径介于基膜和致密膜之间的任意孔径;(3)操作简单方便。原子层沉积反应前,不需对基膜进行预处理;而沉积过程中各步反应均在腔体中进行,可自动控制,不需要人工干预,而且沉积结束后不需后处理,可直接使用;(4)工艺绿色无污染。ALD对陶瓷膜的孔径调节过程不使用有机溶剂,多余前驱体或副产物可回收,没有“三废”排放。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

未来陶瓷膜领域的发展趋势将集中在以下5个方面:(1)进一步提高陶瓷膜材料的分离精度及其分离稳定性,使其在液体分离领域实现纳滤级别的连续高效运行,在气体分离领域实现多组分气体的高效分离;(2)研制具有大孔径及高孔隙率的耐高温陶瓷分离膜材料,使其在资源的高效利用及环境保护等领域实现高温气固分离过程的长期稳定运行;(3)实现陶瓷膜表面性质的调控,通过改变其表面亲疏水性及荷电性、生物兼容性等以拓展陶瓷膜的应用领域;(4)实现陶瓷膜的低成本化生产,结合构建面向应用过程的膜材料设计与制备方法,解决陶瓷膜推广应用的瓶颈问题;(5)研制耐强酸强碱等苛刻体系的膜材料,提高膜材料分离性能的稳定性,拓展其在过程工业的应用范围,多孔陶瓷膜制备技术研究必将进一步引领和推动陶瓷膜技术及产业的发展,进而实现制备技术从理论到应用的转化,早日攻克困扰陶瓷膜技术发展的热点及瓶颈性难点,将缓解过程工业面临的资源,能源与环境的瓶颈压力陶瓷滤芯陶瓷膜陶瓷膜过滤器。

海加尔(厦门)科技有限公司

联系姓名:
联系方式:
电子邮箱:
主要经营:
11
公司简介:
海加尔(厦门)科技有限公司是专注于陶瓷膜研发、制造及其分离技术的开发应用的技术型企业。创始团队十二年专注于高性能,长寿命陶瓷膜的研发、生产及应用,拥有大通量平板陶瓷膜、10nm工业分离陶瓷膜、单晶蓝宝石耐磨陶瓷膜的专利技术及成套设备制造技术。 2007-2009:创始团队引进德国陶瓷膜技术并工业化,获得09年厦门市科技进步奖; 2010-2012:在德国技术基础上不断深入开发,将陶瓷膜成功应用于苏氨酸、硫酸粘杆菌、谷氨酰胺等氨基酸和抗生素发酵液领域。 2013-2015:自主创新开发第二代高性能陶瓷膜,包括无限耐腐蚀陶瓷膜,单晶蓝宝石陶瓷膜、20nm陶瓷陶瓷超滤膜技术,再次获得厦门市科技进步奖。 2017-2018:创始团队成立海加尔(厦门)科技有限公司,年产陶瓷膜15000m2,自主研发10nm单晶锆宝石膜并实现工业化应用。 2019:开发高精度平板陶瓷膜技术,用于大规模污水处理提标。
内容说明:
翼企网为第三方交易平台及互联网信息服务提供者,翼企网所展示的信息内容是由海加尔(厦门)科技有限公司经营者发布,其真实性、准确性、合法性均有店铺经营者负责。翼企网提醒您购买前注意谨慎核实,如您对信息有任何疑问的,请在购买前通过电话与商家沟通确认翼企网存在海量企业商铺和供求信息,如您发现店铺内有任何违法/侵权信息,请立即向翼企网举报并提供有效线索。
热点资讯
产品推荐